GSK3β-Dependent Phosphorylation Alters DNA Binding, Transactivity and Half-Life of the Transcription Factor USF2
نویسندگان
چکیده
The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3β as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3β converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3β-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3β. Further, experiments with USF2 variants mimicking GSK3β phosphorylated USF2 in GSK3β-deficient cells showed that phosphorylation of USF2 by GSK3β did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.
منابع مشابه
Phosphorylated C/EBPβ Influences a Complex Network Involving YY1 and USF2 in Lung Epithelial Cells
The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional acti...
متن کاملFunctional domains of the transcription factor USF2: atypical nuclear localization signals and context-dependent transcriptional activation domains.
USF is a family of basic helix-loop transcriptional factors that recognizes DNA-binding sites similar to those of the Myc oncoproteins. Here, various functional domains in the mouse USF2 protein were identified and characterized. Indirect immunofluorescence studies with transiently transfected cells revealed that both the basic region and the highly conserved USF-specific region (USR) are invol...
متن کاملProtein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer
The upstream stimulatory factors (USFs) are regulators of important cellular processes. Both USF1 and USF2 are supposed to have major roles in metabolism, tissue protection and tumor development. However, the knowledge about the mechanisms that control the function of USFs, in particular in tissue protection and cancer, is limited. Phosphorylation is a versatile tool to regulate protein functio...
متن کاملCell-type-dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation.
USF1 and USF2 are basic helix-loop-helix transcription factors implicated in the control of cellular proliferation. In HeLa cells, the USF proteins are transcriptionally active and their overexpression causes marked growth inhibition. In contrast, USF overexpression had essentially no effect on the proliferation of the Saos-2 osteosarcoma cell line. USF1 and USF2 also lacked transcriptional act...
متن کاملCloning and functional expression of an E box-binding protein from rat granulosa cells.
Ovarian granulosa cells undergo cell growth and cytodifferentiation during follicular maturation. In a number of tissues, the gene expression that is responsible for the cytodifferentiation is largely dependent on E box(es) located upstream of the responsible genes. In this study, we report on the cloning of cDNA(s) encoding E box (5'-CACGTG-3')-binding protein from a rat granulosa cell cDNA li...
متن کامل